Unsupervised Construction of Human Body Models Using Principles of Organic Computing
نویسندگان
چکیده
Unsupervised learning of a generalizable model of the visual appearance of humans from video data is of major importance for computing systems interacting naturally with their users and others. We propose a step towards automatic behavior understanding by integrating principles of Organic Computing into the posture estimation cycle, thereby relegating the need for human intervention while simultaneously raising the level of system autonomy. The system extracts coherent motion from moving upper bodies and autonomously decides about limbs and their possible spatial relationships. The models from many videos are integrated into meta-models, which show good generalization to different individuals, backgrounds, and attire. These models allow robust interpretation of single video frames without temporal continuity and posture mimicking by an android robot.
منابع مشابه
Real-Time Building Information Modeling (BIM) Synchronization Using Radio Frequency Identification Technology and Cloud Computing System
The online observation of a construction site and processes bears significant advantage to all business sector. BIM is the combination of a 3D model of the project and a project-planning program which improves the project planning model by up to 6D (Adding Time, Cost and Material Information dimensions to the model). RFID technology is an appropriate information synchronization tool between the...
متن کاملEvaluation of Iranian electronic products manufacturing industries using an unsupervised model, ARAS, SAW, and DEA models
متن کامل
Prediction of the pharmaceutical solubility in water and organic solvents via different soft computing models
Solubility data of solid in aqueous and different organic solvents are very important physicochemical properties considered in the design of the industrial processes and the theoretical studies. In this study, experimental solubility data of 666 pharmaceutical compounds in water and 712 pharmaceutical compounds in organic solvents were collected from different sources. Three different artificia...
متن کاملOptimization of sediment rating curve coefficients using evolutionary algorithms and unsupervised artificial neural network
Sediment rating curve (SRC) is a conventional and a common regression model in estimating suspended sediment load (SSL) of flow discharge. However, in most cases the data log-transformation in SRC models causing a bias which underestimates SSL prediction. In this study, using the daily stream flow and suspended sediment load data from Shalman hydrometric station on Shalmanroud River, Guilan Pro...
متن کاملUsing the Reaction Delay as the Driver Effects in the Development of Car-Following Models
Car-following models, as the most popular microscopic traffic flow modeling, is increasingly being used by transportation experts to evaluate new Intelligent Transportation System (ITS) applications. A number of factors including individual differences of age, gender, and risk-taking behavior, have been found to influence car-following behavior. This paper presents a novel idea to calculate ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1704.03724 شماره
صفحات -
تاریخ انتشار 2017